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WIND-INDUCED PERTURBATIONS OF THE SURFACE OF A VISCOUS FLUID* 

M.V. ZAVOLZHENSKII 

Interaction between a heavy incompressible fluid and air flow is considered in two 

cases: 1) the air flow velocity is specified at some height above the water surface, 

and 2) the layer of fluid of depth 17, is subjected to constant shear stresses S' 

generated at its surface by the air flow. In the first case integral representa- 
tions of the form of the fluid surface are obtainedinlinearformulaticn. Asymptotic 

analysis of these is carried out for small vzv-3 and limited time intervals (1is 

the scale of the air flow velocity). Some qualitative conclusions are arrived at 

relative to the initial stages of interaction between the air flow and the fluid 

surface. In the second case when S'h,21(pv*) - m , the auto-oscillation mode in the 

fluid layer the loss of stability of the steady mode with triangular velocity pro- 

file is investigated. Sufficient conditions of stability of such auto-oscillation 

mode are obtained and some of its properties investigated. 

Wind-induced waves in a perfect fluid are simulated on the basis of energy and statistic- 

al considerations /l/. If viscous friction is taken into account, surface waves can be con- 

sidered as the result of application to the fluid surface of tangential and normal stresses;. 

such problems were described in /2/ in terms of linearized Navier-Stokes equations, and in 

/3/ in nonlinear formulation. Below, an attempt is made to explain the generation of waves 

by the interaction between the water surface and a given atmospheric flow. The stable wave 
mode at the fluid surface induced by subjecting it to constant shear stresses is studied. 

1. We introduce the Cartesian coordinates x‘, y’,z’ with the Oz'-axis in the opposite 
direction to that of the force of gravity. Let a stationary heavy incompressible fluid 
("water") of density pa and viscosity vz occupy the half-space z'< 0 up to instant t' = 0, 
and a stationary heavy fluid ("air") with properties fJ1 < Pz and v, occupy the half-space 

z'>O. We assume that in part z‘>h' of the "atmosphere" a flow of air is maintained at 
velocity v'(x',~') parallel to the Ox'y' plane along the &'-axis for t') 0. The height h’ 
of the /air/ flow above the plane z'= 0 depends on the state of the ocean surface. Experi- 
ments /l/ show that at approximately 14 cm above the wave crest the wind velocityisvirtually 

unperturbed by the waves generated by it. This implies that height h’ increases with the 
amplitude of wind induced waves. For simplicity we assume h' to be constant. The initial 
ocean surface form z' = 0 varies under the action of air flow and assumes the form 

c'(s', t). Flows u&z) (5', Z', t'), U,@) and u,(l), u,(l) appear in the ocean Z' < 5' and in tht zt- 

mosphere layer 5' <z'< h' (the superscript unity denotes characteristics of atmospheric flows). 
For the determination of wind-induced perturbations u,(j), u,(j) and hydrodynamic pressures 
pl'j)(j = 172) generated by them we use the system of linearized Navier-Stokes equations,with 
the conjugation conditions for flows in the ocean and the atmosphere satisfied not on the 
unknown surface zf= 5' but in the plane z'= 0. Then in the dimensionless variables 

(1.1) 

W vs = Vu(j), @ = VW(i), 5’= q/x, p’lj’=q’,j’ +pjgz’ 

*p = pjv”qw; &=EZ= v- w 
v1’ El = ve, p=$, VZ$ 

p = pv, u (cc, t) = $, V = max 1 v’ (z’, t’)/ 
d , 1’ 

the system of equations and boundary conditions for the determination of v(j)={u(j),w'."), q(j) and 

c is of the form 

!$? + vq(j) = Ejv+(j), Vv(j)=O; ~=vW=O(t=O), j= 2,2 

uu) = v (z, t), Wcl) = 0 (2 = h); u(z) = w(2) = 0 (z = - co) 
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e(l-P)5=c7@)-2E~ 1=_-o -pq(') + 2pe 
a&) 
al z=+Ll' U(')jr=+O =w Ir=_+ 

To solve this problem we apply the Laplace-Carson transform with respect to t and the 

Fourier transform with respect to z. The Laplace-Carson and the Fourier transforms will be 

denoted, respectively, by a bar and a capital letter that corresponds to the original. Omit- 
ting intermediate operations we present the equation 

c.su 

6 =max(pa, p 1/i, G), Rel/i >O, 
v=*,_,. ss 

u(z,t)e-~f-'~~d.T 

for the image of the interface z of the fluids, which holds for small values of parameters 

Pand E. The constraint SftO is due to the omission of terms of order 0 (exp(j-IdI)) but 

not of order 0 (exp (fhl/~” f S/(W))). Th’ 1s simplification is valid for small E but not when 

A--+ 0. Hence results obtained below become invalid as t-t 00. 

Converting (1.2) /4/ and omitting O(6), we obtain the expression for the shape of 

two fluid media interface which is valid under the condition that the quantity of order 

is small in comparison with unity 

the 

0 (6) 

(1.3) 

On the basis of the smallness of E, formulas (1.3) can be simplified by the use of asymptotic 

formulas for function erfcz as 12 I-+- co /5/. According to these formulas the basic contribu- 

tion to the asymptotic expression (1.3) as E-PO is provided by those values of the argument 

of functions erfc which lie in the left-hand half-plane. These values are determined by 

solving for 61 the inequality 

It appears that when 

+0(e), k=v-2(1--p) (1.4) 

then 

(1.5) 

K(w,t,s)=*eaP[ -22ot(l-_)t+ioz--h(~)"'] Xsin[t~riT+-h(-j$-)i’4); 

with an error 0($/d) smaller than unity, 
If the atmospheric wind is absent at the initial instant, t' =O rapidly reaches the 

value v'(x') and then remains constant with respect to time, formula (1.5) can be simplified. 

Neglecting the variation of function v' from 0 to v'(z') over a small time interval, we obtain 

V (0,) K (0, t-, LZ) do (1.6) 
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Separating in the Fourier transform V(o) the oscillating part and including it in the 
kernel K'(o,t,z) we reduce the determination of the free surface shape 6 at time indepen- 
dent wind to the investigation of integrals of the form 

(1.7) 

in which function f(w) is of a nonoscillating kind. 
Since the index of the oscillating exponent contains the large parameter e-y*, it is 

possible to apply the method of stationary phase for estimating these integrals. We obtain: 

2'. When 

(1.8) 

Here the constraints on 5 and t follow (with allowance for (1.4)) from the inequality co> 
(a ma(t))'/' which implies that the stationary point belongs to the integration interval. 

3O. The constraints in (1.8) and (1.9) imply that as 12‘ /-tm,tft 00 the stationary 
point of the phase function of integral 11.7) is outside the integration interval. Hence, 
when 15]-+oo,tjtoz it is necessary to derive the asymptotics of integral Cl.71 by integrat- 
ing by parts. This yields 

(1.10) 

4O. When Iml-+m,t--+03 it is possible to disregard the last term in the phase func- 
tion of integral (1.7). The method of stationary phase then yields 

When in cases lo, 2O, and 4' z is outside the respective interval, S is asymptotically 
zero. The method of integration by parts and that of stationary phase yield the same error: 
formulas (1.8)- (1.11) are valid under the condition that the quantity 0($/q is smaller than 
unity and can be neglected. Note that case 4O with /zJ-~, t-m defines the behavior of 
integral (1.7) but not of the formula for the shape of interface of the fluid media, since 
formulas (1.6) and (1.7) are constructed on the basis of (1.21, the formula which is not 
valid when s=O, (i.e. t-m). It is, however worthwhile to consider formula (1.111, since 
under certain conditions@ -O,h-O]i.tbecomesthe formula known in the theory of fluid motion 
under the action of stresses at its surface /6,7/. 

5'. It remains to consider the case when Ix I+ 03, t+ 00 , in which formula 11.6) fOiY 

constant wind currents in the atmosphere is no longer valid, since it xesults in the contrad- 
ictory conclusion of cessation of motion of the fluid. To determine the state of fluid in 
the neighborhood of the considered constant flow u(x) in the atmosphere as t+m we revert 
to the input boundary value problem which we shall solve in the steady state, setting d/%=0. 
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As the result, we obtain for the form of the interface of fluid media with time independentair 

flow the following exact expression: 

When the interactionbetweenwater and air takes place at 20°C and normal atmosphericprcs- 
sure, then p = 0,018. Because of this it is possible to disregard in the expression for 
kernel K(x) terms with the coefficient ~1. Further simplifications are linked with the use 
of parameter h. If h<1 (wind directly at the water surface), it is possibleto disregard 
202fks in the denominator of integral K(z). Then 

(1.12) 

which is correct to ~(max(~,~)). 
If &>I (wind high above the water surface) I it is possible to disregard 2w%'f 1 in 

the denominator of integral K(s) and replace hyperbolic functions by exponential ones. Then 

(1.13) 

which is correct to o(max(j~,h-1)). -L 
The damping increment of E in formulae (1.8)- (1.11) is expressed in terms of dimension- 

al variables (1.1). Analysis of this increment and of the constraints on I and t at which 
formulas (1.8)- (1.11) are valid leads to such conclusions. The first initial and the second 
stages, respectively, at (t<t,) and (t<&) of wave fomlation are of short duration. When 
the wind is at an altitude of several tens of meters the initial stage lasts only seconds and 
the second, several minutes. For lower altitude wind these times are shorter. Formulas (1.8) 
and (1.9) are, nevertheless , interesting as providing an insight into the wave formation mech- 
anism. They are qualitatively different. For instance, at the initial stage the time acts as 
a brake, while in the second it stimulates the development of the wave process. The viscosity 
of water impedes wave fomlation, while the viscosity of air sustains wave formation throughout 
the interaction of wind and ocean. The effect of gravity on the wave amplitude is interesting. 
During the initial stage (t<to) it hinders wave generation, while in the second, t<to, it 
increases the wave amplitude. During the propagation stage (s>i) (1.10) and damping(s-+co, 
t-t 0~) (1.11) gravitation again decreases the amplitude. A summary of the effects of various 
characteristics~of the 
plus and minus denote, 
effect) 

wave process on the damping decremen t is tabulated below (the signs 
respectively, amlification and weakening, zero means absence of any 

Period 
Time 
Distance from source 
Wind altitude 
Gravitation 
Viscosity: of water 

of air 
DensitytoE water 

of air 

- _+_ - - 
- -t - 
+ + -g -i- 

- 
+ 4” i 4 

2, Formulas (1.8) and (1.11) are valid for limited values of 1'. Observations show that 
as t'-tccr no steady flow in the fluid obtains. An unstable one may be possible. An attempt 
is made below to determine a stable wave mode in a fluid layer k,($ ( p' of depth h, induced 
by constant stresses S’ acting along tangents to the perturbed fluid surface 2' = 5' in the 
Ox' direction. We locate the origin of a orthogonal Cartesian coordinates x',s' on the un- 

perturbed surface of the fluid z' =O with the 0s' axis pointing in a direction opposite to 
that of gravity. At 2' = --hh, the fluid velocoty is zero, and at e' = 6' the dynamic and 
kinematic conditions are satisfied at the surface. For the determination of velocity V= 

(ZQ,%}, the difference p'---p* between the hydrodynamic and atmospheric pressures (as functions 

of 5'. z', ?!')I and of the surface form z' = c(z',t') we have the system of Navier-Stokes equa- 
tions and of boundary conditions 

.&-(vv)v+$Cq'==4%. vv===o, q’===pS--p*$pgz’ 

Solution of this problem is sought in the form of a wave defined bytheactualwavenumber 
m' (or length h' =Sn/w') and the phase velocity c' which has to be determined. For this we 
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set 

v (z’, z’, t’) = v (w‘ (5’ -c’t’), z’), q’ = q‘ (3, 2’) 

r;’ = E’(z), 3 = co’ (z’ - c’t’), 0 < 5 g 2s 

In dimensionless variables formulas (2.1)- (2.3) are of the form 

(2.3) 

(2.4) 

In these variables the problem f2.1)- (2.3) has for any 61 and C the exact solution Il=rWM 

p =i I, ~0 which corresponds to a shear flow with a triangular velocity profile and unperturbed 
fluid surface. We seek such 0 and c for which problem (2.1)- (2.3) has a solution different 
from the stable one. We determine the dynamic conditions (2.2) by expanding them (at 2= 
1 -+-sac) in series in powers of Es& and shall seek the solution in terms of seriesinpositive 
powers of e. This yields a recurrent sequence of linear boundary value problems for thecoef- 
ficients of series. For the series zero terms a homogeneous spectral problem is obtained. We 
confine the investigation to the latter. Its solution is of the form 

(u, w, q, 5) = a KU,, (z), wl (s), q1 (s), 1) eir i- (&(z), & (s), 
Q1 (z), 1) ewixI 

(2.5) 

Using methods known in the theory of branching /8/ we can represent the amplitude 2a>O 
in terms of corrections on w and c by analyzing the conditions of solvability of inhomogene- 
ous problems for the succeeding coefficients of series in E. Leaving this relation aside, we 
would only point out that for fairly small e there exists, as shown in /8,9/, an auto-oscila- 
tion mode (2.5) and, also, that the series in e are convergent. The coefficients in (2.5) are 
expressed in temls of wi from the linearized for solution u =w =p ~0 Navier-Stokes equa- 
tions in variables (2.4) 

ho,’ 
Y==W’ q1 = f (Wlm - ]wZ + imY (2 - Cfl Wl’ Jr ioSw,) (2.6) 

Function w1 satisfies the equation, and together with function q1 expressed in conformity 
with (2.6) in terms of w, satisfies the boundary conditions 

dZ I. ---o~-~ws(s--c)](~-w~)w~=o 
dz” 

w, = "1' =o (2 =O); w," + 0%0, = 0 

Z&=-s -$$$(% -225,') (z= 1) 

(2.7) 

The substitution of (-0) for o indicates passing to complex conjugation, with formulas 
(2.5) remain unchanged. This means that it is sufficient to find w>O. Then all wave 
numbers in the zero approximation are of the form fw. 

We seek a solution of problem (2.7) in the form of series in positive powers of parameter 
a. We confine ourselves to the determination of the zero terms of this series neglecting 

the quantity o(U) as smaller than unity. For this we obtain from (2.7) the following equa- 
tions and conditions: 

The fundamental system of solutions of the homogeneous equation that corresponds to (2.9) 
is expressed in terms of Bessel functions with indices ziz'/s 

Vl (4 = cplk 09 4 = EJ-% w cpe(z) =(PB (6 0, 4 = EJv.(B1) (2.11) 

E = [cl? + iws (2 - c)J”2 
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The branch whose imaginary part is positive for zc IO, m) is fixed at l/z. If z>o, 
the absolute value of f/z is taken. A direct determination of the Wronskian of function 
(2.11) yields 

-.- 
~p~r~~z'-~zrp,'=~icoS (2.12) 

The general solution of the homogeneous equation (2.9) is 

W = Aq, (z, 0, 4 + Bcp, (2, 0, c) (2.13) 

For the determination of constants A and B we introduce (2.13) in (2.10). We have 

Acp, (1, 0, c) + Bq, (1, 0, c) = 0 (2.14) 

AJ(l) (1, co, c) + BPS) (1, co, c) = 0 

J”)(z)=J”‘(z,w, c)=Spj(s, 0, c)sh(w(Z-x2))& j-1, 2 
(2.15) 

The conditiion of solvability of the homogeneous system (2.14) is defined by the complex eq- 

uation 

J(2) (1, 0, c) cp,(l, 0, c) = J(1) (1, w, c) ‘p* (1, 0, c) (2.16) 

which is used for detemlininq the actual wave number 61 and phase velocity c in the zero ap- 

proximation. 

From (2.8), (2.13), (2.15), and (2.16) we obtain the integral representation of coeffic- 

ients in formula (2.5) 

Us = -+ [AJ”” (z) + BJ”” (z)], c1 = 1 (2.17) 

WI = -+ J(l) (z) + + J@) (z), ql= AQ, (z) + BQB (z) 

Qj(z)=$ (Cpj(Z)~~is[(z~c)J(~)'~~)-J(~)(~)]~, j=l, 2 

For the determination of A and Bwe have formulas (2.14), (2.16), 

(2.18) 

and the dynamic condition Pnn =-pp* on surface z' = 5' which in variables (2.4) yields 5 = 

Q + 20 hdax (2 = 1) accurate to 0 (a). Introducing here the quantities of (2.5) and taking 

into account (2.17) and that & = 1, we obtain the second relationship between A and B, which 

with the use of (2.8), (2.12), and (2.16) reduces to 

A={-= -1;; (2.19) 

3. The analysis of solutions of Eq.(2.16) for frequencies is carried out for S>l. 
We set 

O=Sa, E=Sn, fil=sg, /cl=fi(z)+- (3.1) 

Tl = q (z) = fee' + ia (2 -c) 

and apply to (2.11) the asymptotic formulas for Bessel functions at large values of the arqu- 

ment. It is then possible to set 

cpl(Z) = +os a (z), 92 (4 = -sin@(z), C = 
Jf% 

I/ 
-F 
Xi--s (3.2) 

The constant C is chosen so that the Wronskian of the system of functions (3.2) is the same 

as S-+00, as the expression in (2.17). Substituting (3.2) into (2.15) weobtaintheintegrals 
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rlo = 11 (Oh '11 = 9 (I), PO = B (O), 81 = p (I), s + w 
determined asymptotically as S+ 00. 

Substituting (3.2) and (3.3) into (2.16) we obtain the frequency equation (3.4) 

% 
2s (‘lo:’ - ql:‘) ia 

3a =1,, 

which implies that 

3a 
rlo3-Q=apk -= arctge, pk= 3jc(ys+i), k=O,fl, +2,... 

(3.4) 

(3.5) 

We set 

X = (a, c), n(X)=rlo3-~~S-a~k, R(X)=+arctge 

Then (3.5) reduces to the equation 

n(X) + S_'R (X) =o (3.6) 

Such equations were obtained in /lo/, whose results made possible to establish that, when 

functions n(X) and R(X) have first and second order derivatives with respect to a and c 

and at point X0, where n (X0) = 0 the first derivatives of n with respect to CL and c are 

not simultaneously zero, then for fairly large S the solution of Eq.(3.6) is close to that of 

equation n(X)=0 and can be derived using the Newton-Kantorovich method with initial ap- 

proximation X0. Existence of the necessary derivatives is ensured by that the function 

arctg (ia/qo) is analytic with respect to its argument, since I~cz/~~ I<1 when c#= 0. Function 

n(X) also has limited derivatives with respect to a and c in any finite domain of variations 

of these variables not containing point a =c =I). Hence in the case of fairly large S we 
have instead of (3.6) the equation 

.- 
qo' - 'nrs - ‘+k = 0, q0 = ~a2-iac, q1 =1/qo2+ia 

whose solution differs from that of the input equation (3.6) by 0 (l/S) as s-+00. 
To solve Eq.(3.7) we set 

(3.7) 

q. = l/,/n/41/; (5 _ s-1) (3.8) 

Then from (3.7) 

3pz4-~~_1-p=0, pd!re-n*~r 
4pk 

(3.9) 

which is to be supplemented by the relation ~102=aa-&, from which by virtue of (3.8) wehave 

a = --V1 Im (9 + S-*), c = */z - I/& Re (5z + p) (3.10) 

and the inequality Imqo> 0 that fixes the branch of root required for eliminating irrelevant 

roots. With 5 as the variable it is of the form 

Im I(5’ - s)e’X/4] < 0 (3.11) 

We restrict the investigation of system (3.9)- (3.11) to the following three cases. 

1'. pk+o. In this case the number p in (3.9) is a large parameter. Equation (3.9) has 
the following roots: 

xn = 3-‘1’ exp 
i v ni) + 0 (p-l), n=O, 1, 2, 3 (3.12) 

For the determination of n we use condition (3.11) on the basis of which we conclude,with 

allowance for (3.12) that cos (xn/2 -n/3)> 0. Hence n = 0 and 1. Introducing (3.12) with 
these n in (3.10) and rejecting negative values of a, we obtain 

1 

a=21/9’ c= $, IPkl<l (3.13) 

2O . pk-+--00. Here p-l is a large parameter and 

a = v -+k/2, c = ‘12, pk + --OO (3.14) 
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3O. pk+ O”. System (3.9)- (3.11) has not real solutions for IX. 
Let us further simplify formulas (2.18) and (2.19) using relations (3.2) and (3.3), sim- 

ilar expressions for the derivatives J(j)(z) when z =I, and frequency equation (3.5). We 
obtain 

(3.15) 

4. Leaving aside the problem of velocity and dynamic pressure fields throughoutthefluid 

depth, we shall determine only the horizontal velocity at the fluid surface and the hydro- 

dynamic pressure on the ground. From (2.17), (3.31, (3.2), and (3.15) we have 

ul(l)=-&, ql(0)=-A 2cL--i ’ a 
‘( 1 4aA 2cL_tL 

Now using formulas (2.3) - (2.51, (3.13), (3.141, and (4.1) we obtain the formula for the 
fluid surface shape 

5'=a'cosz. r= $(,'-c?') (4.2) 

where a' is the dimensional analog of 2a in (2.5). 
The horizontalvelocity of fluid at the surface 

gh’a’ v, (z’, 5’) = -$ (h, f 5’) + 4nv sin z 

The hydrodynamic pressure on the ground 

p’ (I’, --h,)=p*$pgh+ g+) 
sinz, ph.-+-~ 

q(X) =(,0s,. n/3), Ip&zgl 

The phase velocity, period, and wave length 

, S'h, 
c =7&-’ 

(4.3) 

(4.4) 

(4.5) 

h’ _ 2.TPV2 z_ = [(m/c’) V--2hk, ph. - - y (4 -= , 
J”h,a ca (2nv1/311c’, IpkI<l (b) 

ph = 
3Xpv*(2k+ 1) 

ctd 'IQ 
=3nv(21;+1) 

8c’h, , k=O, +I, +2 ,... 

The following observations are based on formulas (4.2)- (4.5). 

The flow is decomposed into two wave systems defined in (4.5) by the lengths (a) and (b). 

Waves of the (b) type virtually do not differ as to length and period. The number of them is 

limited, with the number k determined by the condition 12k-b 1[~4S’h,2/(3npv2). Owing to this 

these waves are not always present, particularly over shallow waters. The maximum pressure 

on the ground, in case of waves (b), lags behind the wave crest in phase by rrl3. 

Waves of the (a) type differ as regards their period and length. Their numberisinfinite. 

The represent a one-parameter set of waves that propagate in the direction oftangentstresses. 

Waves of type (a), unlikethose of type (b), exist for any k. Their length and perioddecrease 

as k-- m, when they have the form of ordinary ripple on the water surface. 

The following properties of waves (a) and (b) should be noted. 
The phase velocity of all waves induced by tangential stresses at the surface of water is 

the same. 
The perturbed velocity on the slope ahead of the wave crest is in the direction of tang- 

ential stresses at the surface, while behind the wave crest along the rise the direction of 

velocity is opposite to that of stresses. 
An increase of stresses S' has a smoothing effect on the surface of fluid. sinceittends 

to decrease the length of waves and their /oscillation/ period and to increase the phase vel- 

ocity. An increase of the fluid depth also decreases the wave length and period while increas- 

ing the wave phase velocity. On the other hand, increase of viscosity increases the wave 

length and period but diminishes the phase velocity. The fluid density has the same effect 

on waves, a fact that is in accbrd with experiments. It is known that a sharp decrease of the 

density of undulating water by covering it with liquid oil weakens its surface oscillations. 

An interesting peculiarity of waves is that their length, period, and phase velocity are in- 

dependent of gravity acceleration g. 
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The obtained results are valid if the three conditions t?~1,O~l,S~i whichby virtue 

of (2.4) are equivalent to the stipulation that the fluid depth is 

h, 3 max (S’ i (pg), vpvz 2 9 1 g) 

are satisfied. 
The condition that Ss>l indicates that auto-oscillations (2.5) are investigated in the 

supercritical mode. The question of that mode stability reduces to the investigation of the 

imaginary part of complex roots c of the dispersion equation (2.16) for a given fixed o or 

a=olS as S-m. From (3.7) and (3.8) we obtain for the functionaldependence of c on z 

and z the formula c = '1, - ia - (z* + z-2)/ 4. Introducing this expression into the wave function 

arp(io(s- ct)), we find that the auto-oscillations are stable when Re (-lC) < 0. Hence the stab- 

ility condition is of the form Im[--ia-(zPf~-s)/4]~0. From this by virtue of (3.16) we have 

a>% where a, is defined in (3.13) and (3.14), as (~~-0) and bk - - “=‘I I respectively. 

This result in dimensional variables in (2.4) indicates that the auto-oscillations (2.5) are 

stable, if the wave number o' satisfies conditions 

S’h,3 
co’>-, p 

' 2pv=v3 k- 
0 

This shows that the increase of depth and intensity of stresses at the surface, as well 

as the decrease of density and viscosity of fluid reduce the wave number range in which auto- 

oscillations (2.5) are stable as ~-m . 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 
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